© Copyright Statement

All rights reserved. All material in this document is, unless otherwise stated, the property of **FPC International, Inc**. Copyright and other intellectual property laws protect these materials. Reproduction or retransmission of the materials, in whole or in part, in any manner, without the prior written consent of the copyright holder, is a violation of copyright law.

EVALUATION OF FPC-1 FUEL PERFORMANCE CATALYST

AT

WEST PENN POWER

REPORT PREPARED BY UHI CORPORATION PROVO, UTAH

April 1, 1991

CONTENTS

INTRODUCTION	Page 1
ENGINES TESTED	1
TEST EQUIPMENT	1
TEST PROCEDURE	1
CONCLUSION	3

Appendices:

Carbon Balance Method Technical Approach

Raw Data Work Sheets

Tables 1 - 10 Calculation of Fuel Consumption Changes

Figure 1 Carbon Balance Formula

Figure 2 Sample Calculation

INTRODUCTION

FPC-1 is a complex combustion catalyst, which when added to liquid hydrocarbon fuels at a ratio of 1:5000 effectively improves the combustion reaction, resulting in increased engine efficiency and reduced fuel consumption.

Field and laboratory tests alike indicate a potential to reduce fuel consumption in diesel fleets in the range of 4% to 9%. This report summarizes the results of controlled back-to-back field tests conducted in cooperation with West Penn Power, with and without FPC-1 added to the fuel. The test procedures applied were the <u>Carbon Balance Exhaust Emission Tests</u> at a given load and speed.

ENGINES TESTED

The following engine makes were tested:

5 x 7.8 Ford Engines

TEST EQUIPMENT

The equipment and instruments involved in the carbon balance test program were:

Sun Electric SGA-9000 non-dispersive, infrared analyzer (NDIR) for measuring the exhaust gas constituents, HC (unburned hydrocarbons as hexane gas), CO, CO2, and O2.

A Fluke Model 51 type k thermometer and thermocouple for measuring exhaust gas and ambient temperature.

A Hewlett Packard Model 41C programmable calculator for the calculation of the engine performance factors.

TEST PROCEDURE

Carbon Balance

The carbon balance technique for determining changes in fuel consumption has been recognized by the US Environment Protection Agency (EPA) since 1973. The method relies upon the measurement of vehicle exhaust emissions to determine fuel consumption rather than direct measurement (volumetric or gravimetric) of fuel consumption.

The fuel consumption test method utilized in this study involves the measurement of exhaust gaseslef a stationary vehicle at a steady engine load and rpm. The method produces a value of engine fuel consumption with FPC-1 relative to a baseline value established with the same vehicle.

Engine speed and load are duplicated from test to test, and measurements of exhaust and ambient temperature are made. Under these conditions a minimum of five readings were taken for each parameter after stabilization of the exhaust temperature.

Five trucks were tested for both baseline and treated fuel segments. Each unit was tested under steady-state conditions at a specific engine speed (rpm) while the transmission was in neutral. Table 1 below summarizes the percent change in fuel consumption documented with the carbon balance on an individual unit basis.

Table 1: Summary of Carbon Balance Fuel Consumption Changes

Unit	No. I	Engi	.ne	RPM	%	Change
270	5	7.8	Ford	2500	_	2.00
270	7	7.8	Ford	1750	_	5.40
227	-	7.8	Ford	2500	-	6.00
227	5	7.8	Ford	1750	_	12.10
163	7	7.8	Ford	2500	_	4.70
163	7	7.8	Ford	1750	-	6.70
161	-	7.8	Ford	2500	_	6.00
161	•	7.8	Ford	1750	_	9.60
156	7	7.8	Ford	2500	_	2.30
156) -)	7.8	Ford	1750	_	14.60

The results indicate a reduction in fuel consumption for all units tested. The general trend of improved (reduced) fuel consumption is within the general parameters of reduced fuel consumption achievable by the use of FPC-1 Fuel Performance Catalyst.

CONCLUSIONS

The series of tests conducted on a number of 7.8 Ford powered trucks verify that the addition of FPC-1 to the fuel will reduce fuel consumption.

1) The reduction in fuel consumption for the fleet determined by the carbon balance method is 6.90%.

<u>APPENDICES</u>

CARBON BALANCE METHOD TECHNICAL APPROACH:

A fleet of diesel powered equipment owned and operated by West Penn Power was selected for the FPC-1 field test.

The SGA-9000 exhaust analyzer, and the thermometer instrumentation were calibrated prior to both baseline and treated fuel data collection. The SGA-9000 was calibrated using Scott Calibration Gases, and a leak test on the sampling hose and connections was performed.

Each engine was then brought up to stable operating temperature as indicated by the engine water temperature and exhaust temperature. No exhaust gas measurements were made until each engine had stabilized at the engine speed selected for the test. # 2 Diesel fuel was exclusively used throughout the evaluation.

The baseline fuel consumption test consisted of a minimum of five sets of measurements of CO_2 , CO, unburned hydrocarbons (measured as CH_4), O_2 , and exhaust temperature made at 90 second intervals. Each engine was tested in the same manner.

After the baseline test, on December 17, 1990, the fuel storage tank, from which the fleet is exclusively fueled, was treated with FPC-1 at the recommended level of 1 oz. of catalyst to 40 gallons of diesel fuel (1:5000 volume ratio). The equipment was then operated with the treated fuel as normal until March 27, 1991, when the treated fuel test was run. At this time, the test described above was repeated for each engine, only this time with FPC-1 treated fuel.

Throughout the entire fuel consumption test, an internal self-calibration of the exhaust analyzer was performed after every two sets of measurements to correct instrument drift, if any. A new analyzer exhaust gas filter was installed before both the baseline and treated fuel test series.

From the exhaust gas concentrations measured during the test, the average molecular weight of these gases, and the temperature of the exhaust stream, the rate of fuel consumption may be expressed as a "performance factor" which relates the fuel consumption of the treated fuel to the baseline. The calculations are based on the assumption that the fuel characteristics, engine operating conditions and test conditions are essentially the same throughout the test. All of these factors are controlled as much a possible.

All performance factors are rounded off to the nearest meaningful place, as shown in the sample calculation in Figure 2.

Figure 2.

SAMPLE CALCULATION FOR THE CARBON MASS BALANCE

Baseline:

Equation 1 Volume Fractions

VFCO2 = 1.932/100

= 0.01932

VFO2 = 18.95/100

= 0.1895

VFHC = 9.75/1,000,000

= 0.00000975

VFCO = 0.02/100

= 0.0002

Equation 2 Molecular Weight

Mwt1 = 29.0677

Equation 3 Calculated Performance Factor

pf1 = 2952.3×29.0677 86(0.0000975)+13.89(0.0002)+13.89(0.01932)

pf1 = 316,000 (rounded to nearest meaningful place)

Treated:

Equation 1 Volume Fractions

VFCO2 = 1.832/100

= 0.01832

VFO2 = 18.16/100

= 0.1816

VFHC = 10.2/1,000,000

= 0.0000102

$$VFCO = .02/100$$

= 0.0002

Equation 2 Molecular Weight

$$Mwt2 = (0.0000102)(86)+(0.0002)(28)+(0.01832)(44)+(0.1816)(32) \\ +[(1-0.0000102-0.0002-0.1816-0.01832)(28)]$$

Mwt2 = 29.0201

Equation 3 Calculated Performance Factor

$$pf2 = \underbrace{\frac{2952.3 \times 29.0201}{86(0.0000102) + 13.89(0.0002) + 13.89(0.01832)}}_{9f2 = 332,000 \text{ (rounded)}}$$

= **-** 4.8%

Equation 4 Percent Change in Fuel Consumption:

Calculation of Fuel Consumption Changes/Carbon Balance

Table 1

Unit 270/2500 RPM

Mwt1 29.1188 Mwt2 29.1137 pf1 201,000 pf2 205,000

% Change F.C. = [(205,000 - 201,000)/201,000](100)

% Change F.C. = - 2.00%

Table 2

Unit 270/1750 RPM

Mwt1 29.0177 Mwt2 29.0044 pf1 294,000 pf2 310,000

% Change F.C. = [(310,000 - 294,000)/294,000](100)

% Change F.C. = - 5.40%

Table 3

Unit 227/2500 RPM

Mwt129.0564Mwt229.0397pf1251,000pf2266,000

% Change F.C. = [(266,000 - 251,000)/251,000](100)

% Change F.C. = - 6.00%

Table 4

Unit 227/1750 RPM

Mwt1 28.9938 Mwt2 28.9689 pf1 340,000 pf2 381,000

% Change F.C. = [(381,000 - 340,000)/340,000](100)

% Change F.C. = - 12.10%

Table 5

Unit 163/2500 RPM

Mwt1 29.1045 Mwt2 29.0874 pf1 212,000 pf2 222,000

% Change F.C. = [(222,000 - 212,000)/212,000](100)

% Change F.C. = - 4.70%

Table 6

Unit 163/1750 RPM

Mwt129.0006Mwt228.9829pf1327,000pf2349,000

% Change F.C. = [(349,000 - 327,000)/327,000](100)

% Change F.C. = - 6.70%

Table 7

Unit 161/2500 RPM

Mwt1 29.0966 Mwt2 29.0813 pf1 215,000 pf2 228,000

% Change F.C. = [(228,000 - 215,000)/215,000](100)

% Change F.C. = - 6.00%

Table 8

Unit 161/1750 RPM

Mwt1 29.0085 Mwt2 28.9839 pf1 313,000 pf2 343,000

% Change F.C. = [(343,000 - 313,000)/313,000](100)

% Change F.C. = - 9.60%

Table 9

Unit 156/2500 RPM

Mwt1 29.0928 Mwt2 29.0763 pf1 221,000 pf2 226,000

% Change F.C. = [(226,000 - 221,000)/221,000](100)

% Change F.C. = - 2.30%

Table 10

Unit 156/1750 RPM

Mwt1 29.0055 Mwt2 28.9725 pf1 316,000 pf2 362,000

% Change F.C. = [(362,000 - 316,000)/316,000](100)

% Change F.C. = - 14.60%

NAME OF COMPANY! WEST PENN POWER	18.550-04.00.00
DATE OF TEST: DEC 17 90	
ENGINE TYPE AND SPECS: 7.8 Ford	moy make distributions
1.D. NUMBER: 375/56 MILEAGE (OR HOURS): 243/	
TYPE OF TEST:	rassus.
AMBIENT AIR TEMPERATURE:	

	CQ	HG	<u>C02</u>	02	EX. TEMP.	RPM		
1.	104	17	2.75	16.3	428	2500		
2.	104	1 mg	273	16.2	430	2500		
з,	104	17	2.74	16,3	433	2500		
4.	104	17)	2,74	16.3	434	3.500		
5.	104	17	272	16.4	437	2500		
б.	,02	17	191	17.4	359	1250		
7.	102	17	191	17.4	357	1750		
8.	102		1.92	17.5	349	1250		
7.	.02.	17	192	17.4	342	1250		
10.	102	15	192	17.5	34/	17.50		
0 =	Carbon	Monoxide: HO	= Hydrocar	poual COS	= Carbon Dlo	xlde: 02 = Qxygen		
ST	ART TIME	. 4:49	END TIME:	4:56	LENGTH OF	TEST: 7		
SI	Signature of technician(s):							

TYPE (OF TEST:	78/6/ ERATURE:	, , , , , , , , , , , , , , , , , , ,	OR HOURS): /	1838
AUBIE	ii Vik rene	ERMIURE:		718 118 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· ·
		EXHAUST	READINGS		
<u>CO</u>	HC	<u>CO2</u>	02	EX. TEMP.	RPM
,04	15	2.84	16, 1	427	2500
104	15	2,82	Kei 1	429	2500
, 104	15	2.82	16.1	434	2500
.04	/5	2,83	16,0	437	. 280
164	17	2.82	16,1	442	كالمام
,02	47	1.92	17.5	354	1750
102	1-1	192	17.4	352	1750
102	15	1,93	124	345	1750
.02	15	495	/7.3	345	1250
102		1.98	. 17.5	343	1750

NAME OF COMPANY: WEST PENN POWER
DATE OF TEST: DEC 17, 1990
ENGINE TYPE AND SPECS: 7,8 FORd 6cy,
1.D. NUMBER: 37-8/63 MILEAGE (OR HOURS): 15.53
TYPE OF TEST:
AMBIENT AIR TEMPERATURE: 45

	<u>co</u>	IIC	C02	<u>uz</u>	EX. TEMP.	RPM
1.	104	/3	2.87	16,1	434	2500
2.	104	14	2.87	16.1	436	2500
3.	.04	15	2.87	16,2	440	2500
4.	104	14	2.86	16.1	441	3500
5.	,04	15	286	16:1	444	2500
б.	.02	15	1.84	17.3	354 3 54	- 1750
7.	,02	15	1.86	17.5	351	1750
8.	,62	15	1.86	12.7.	343	1750
9.	102	14	1.86	17.6	34/	1750
10.	,02	14	1.86	. 17.5	334	1750
() es	Carbon M	onoxlde; HC	= Hydrocar	ponel COS	= Carbon Dio	xlde; D2 = Oxygen
ST	ART TIME:	4:24	_ END TIME	4:32	LENGTH OF	TEST: 8
SI	gnature o	f technicia	in(s)ı	The state of the s	The state of the s	SANDA

	NO THEATTLE LUC	K							
	NAME OF COMPANY: WEST PENN POWER								
	ENGINE TYPE AND SPECS: 7.8 FORd								
	TYPE OF TEST:								
	AMBIE	NT AIR TEM	PERATURE: _		graph, Smillian	ny yanda tikka			
			EXHAUST	READINGS					
	<u>C0</u>	HC	CO2	<u>02</u>	EX. TEMP.	RPM			
1.	102	10	2.45	16.5	427	2500			
2.	.02	10	2.44	16.6	427	2500			
Э,	,02	10	2.44	16.6	428	3500			
4.	102	10	2.44	166	428	2500			
5.	102	10	2.4/	16.7	429	2500			
6.	102	10	1.78	17.8	352	1750 (19	ie		
7.	107	10	1.79	17.7	35/	1230 (1.9	4		
	,02		1.80	17.6	3 45	.1730	trainstension of the		
	.02	10	1.74	17.7	343	1750			
10.	,03		1.78	17.7	340	1756			
0 =	Carbon Me		C = Hydrocai	rbone: CO2	! = Carbon Dlc	oxide: O2 = Oxygen			
	START TIME: 5:22 END TIME: 5:30 LENGTH OF TEST: 48								
51	gnature o	f technici	an(s):β.΄.	4. 10	1 1000				

FANON

EXHAUST GAS ANALYSIS DATA SHEET

NAME OF COMPANY: WEST PENN POWER	The state of the s
ENGINE TYPE AND SPECS: DEC 17, 90	and the state of t
I.D. NUMBER: 439270 MILEAGE (OR HOURS): 1	7 888
TYPE OF TEST:	and the second s
AMBIENT AIR TEMPERATURE:	233 5000-4

	<u>CO</u>	H <u>C</u>	<u>CO2</u>	<u>02</u>	EX. TEMP.	RPM		
1.	102	/3	3.09	15.8	439	2500		
2.	102	13	3.08	15:7	442	2800		
3.	,02	/3	3.04	15. 7	451	2380		
4.	102	12	304	15.7	453	2500		
5.	, 02	13	3.03	15.7	455	350		
б.	102	12	2,04	17,2	37 /	1750		
7.	102	15	204	17,2	368	1250		
Θ.	, 02	17	2.08	17./	362	1750		
9.	10)	15	20.	8 17.1	361	1750		
10.	102		2.0	7 17.2	356	1750		
c	Carbon Mon	oxlde; HC	= Hydrocar	poue: COS	= Carbon Dlox	ide: 02 = Oxygen		
START TIME: $5/02$ END TIME: 5.74 LENGTH OF TEST: $1/2$								
SI	Signature of technician(s):							

4-31-50-31
NAME OF COMPANY: WEST POWN POWER
DATE OF TEST:
ENGINE TYPE AND SPECS: 28 Ford
I.D. NUMBER: 378/57 MILEAGE (OR HOURS): 378/57 4645
TYPE OF TEST:
AMBIENT AIR TEMPERATURE: 75
EXHAUST READINGS

	QΩ	HC	<u>CO2</u>	02	EX. TEMP.	RPM			
1.	.05	24	2.67	16.3	4/6	2500			
2.	.05	25	2.66	16.2	419	2500			
Э.	105	24	2.68	14.3	429	2500			
4.	.03	25	2.65	16-1	433	2500			
5.	.05	34	2.66	16.1	438	2500			
6.	-03	23	167	17.5	355	1750			
7.	163	23	1.65	17.6	35/	1750			
8.	103	21	1.63	17.8	342	178			
9.	03	20	1.65	12.7	346	1730			
	103	21	1.66	17.7	344	1750			
:0 =	Carbon M	onoxide; H	C = Hydroca	arbone; CO2	2 = Carbon Dlox	lde: O2 = Oxygen			
ST/	ART TIME:	4:33	END TIME	E: 4:45	LENGTH OF	rest: /2			
Sle	Signature of technician(s):								

NAME OF COMPANY: WEST PENN POWER
DATE OF TEST: MARCH 27, 1991
ENGINE TYPE AND SPECS:
Fr. 10-7-10-7-10-7-10-7-10-7-10-7-10-7-10-7
I.D. NUMBER: 378/6/ MILEAGE (OR HOURS): 4697
TYPE OF TEST:
AMBIENT AIR TEMPERATURE:

	<u>ÇQ</u>	<u>HC</u>	<u>CO2</u>	<u>02</u>	EX. TEMP.	RPM
1.	.05	24	2.66	16.3	439	2500
2.	:05	24	2.66	16.3	441	2000
3.	105	24	2.64	16.4	446	2300
4.	.05	23	2.64	16.5	447	3500
5.	,04	23	243	165	453	2500
б.	.02	23	1,75	7.6	36/	1750
7.	102	23	475	17.6	358	1730
8.	.02	22	1.71	17.7	356	1750
9.	.02	2)	1.72	17.6	348	1750
10.	102	22	1.71	. 17.7	343	1750
O = Carbon Monoxide; HC * Hydrocarbons; CO2 = Carbon Dloxide; O2 = Oxygen						
START TIME: 5:17 END TIME: 5;27 LENGTH OF TEST: 16						
Signature of technician(s):						

NAME OF COMPANY:	155T PENNPOWER	74. V. S. A. Zulan
DATE OF TEST:	MARCH 27,19	91
ENGINE TYPE AND SPECS:	1 17 1. Million 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
I.D. NUMBER: 378/63	MILEAGE (OR HOURS):	4878
TYPE OF TEST:		The state of the s
AMBIENT AIR TEMPERATURE: _	and continue can be produced to a consequence of the gippy PPBS I is a Palaka and which the same can be consequenced as the continue can be consequenced.	yny'n ngoyggargalaidd ddi

	<u>CQ</u>	HC	CO2	02	EX. TEMP.	RPM
1.	105	26	2.73	16.3	945	7500
2.	.05	26	2.71	16.3	447	2500
Э.	.05	28	2.71	16:3	453	2500
4.	105	28	2.71	16.2	454	2520
5.	105	28	2.70	14:3	458	2500
6,	102	24	1.72	17.6	37/	1750
7.	,02	24	1.72	17.6	368	1750
8.	,02	23	1.74	17.6	354	1750
9.	162	22	1.73	17.6	352	1750
10.	.02	23	172	. /7.7	3 45	1750
CO = Carbon Monoxide; HC = Hydrocarbons; CO2 = Carbon Dioxide; O2 = Oxygen						
START TIME: 5:04 END TIME: 5:15 LENGTH OF TEST: 11						
Signature of technician(s):						

NAME OF COMPANY: WE	I PENN POWER
	MARCH 27, 1991
ENGINE TYPE AND SPECS:	
party of the Management of the Control of the Contr	
1.D. NUMBER: 408227	MILENGE (OR HOURS): 38/59
TYPE OF TEST:	
AMBIENT AIR TEMPERATURE:	.73

	CO	H <u>C</u>	<u>cos</u>	02	EX. TEMP.	RPM
1.	103	22	2.28	16.8	422	2500
2.	103	22	2.28	1619	424	2500
Э.	,03	22	2.27	16.9	428	2300
4.	103	22	2.26	16.8	429	3500
5.	,02	20	2.27	16.9	433	2500
6.	.02	22	1,58	17.8	361	1750
7.	102	22	1.57	179	357	1750
в.	.02	20	1,60	179	347	1750
7.	102	20	1.59	17.8	346	1750
10.	,02	30	1.60.	17.9	340	1755
) = Carbon Honoxide: HC = Hydrocarbons: CO2 = Carbon Dioxide: O2 = Oxygen						
START TIME: 5:45 END TIME: 5:55 LENGTH OF TEST: 10						
Signature of technician(s):						